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ABSTRACT

Background: The study examined the factors affecting data quality in Maridi County,
South Sudan, aiming to improve resource forecasting and equitable health service delivery.
The lack of data has led to drug shortages and late reporting of morbidity data, causing the
Ministry of Health to use a push system for resource allocation. This system is problematic,
as many health facilities struggle to meet set targets.
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DEFINITION OF KEY TERMS

Behavioral factors Behavioral factors are elements such as employee
competence, skills for analyzing the data’s quality, solving

issues related to tasks involving HIS, competence in HMIS

e attitude of staff toward health

Timeliness

Technical factors P g01s used for collecting data that

impact health care data.

Xiv



CHAPTER 1: INTRODUCTION

1.1 Overview

This chapter provided a detailed background to the problem, the problem statement,

research questions, the broad ghje ives, justification for the study

m,rﬂ,f

This H Qunty,
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problematic that many hea d \H ets.

LasTING
An effective health system must have the ability to provide health information. Global
pledges to enhance health outcomes and systems have resulted in enhanced health
management information systems (HMIS) which are used in program planning and

decision-making at all levels of the health system, HMIS generates data on the availability



of health services and the general health of the population. All other aspects of the health
system's decision-making processes should be guided by timely and high-quality data from

an information system (Li et al., 2018).

The challenges affecting data quality in routine health information systems cut across

globally in Lumbini province, Neg sessed through completeness and

completeness of data was 76.1%, .8% (SSD DHIS2, 2021). The South
Sudan Data Quality performance targets are 90% for completeness and 85% for timeliness

(Mathewos, 2015).



An assessment conducted in Maridi County from September 12 to 16, 2022, revealed
discrepancies in the reported data for some selected data elements, such as penta3,
outpatient consultation, ANC first and fourth visits, and skilled deliveries. The analysis
revealed that there was a prevalence of over-reporting or under-reporting in all health

facilities. Due to these patterns, the acc completeness, and timeliness of data in

Maridi County hayg [ o g ) aocelliffat, falls short of the

national targets.

donor funding mechanism that supports Primary and Secondary health care in seven of the

ten states of South Sudan. The county has one of the leading health training schools in
South Sudan. The Health Pooled Fund, through its partners, supports health systems

strengthening, including the HMIS



Before the 2016 subnational unrest, Maridi County had 23 operational health facilities.
Currently, only 12 health facilities can be characterized as fully functional. The DHIS2, an
upgraded version of the program, has transitioned to a cloud-based platform. Owing to the
absence of internet connectivity,ia ty Health Department utilizes

a combination of

Department, where de

It is important*n

In 2019, the South Sudan N !' A = T 1 H {:' ing partners created easily

understandable tools for collecting regular health information. Under the guidance of the
National Ministry of Health, a roll-out training was organized for health facility staff,
concentrating especially on those in charge of managing the data. Additionally, refresher

training was provided to individuals who had previously received training.



Notwithstanding the many efforts, certain health facilities consistently provide monthly
reports that are both inaccurate and incomplete and occasionally delayed (SSD DHIS2,
2021). Thus, the study aimed to identify the factors affecting data quality in health facilities

in Maridi County of South Sudan.

1.4 Research Questj

1. What are the techni-(;;ll factors affecting the data quality in routine health
information systems at all health facilities in Maridi County?

2. What organizational factors influence data quality in routine health information
systems at all health facilities in Maridi County?

3. What behavioral factors influence data quality in routine health information

systems at all health facilities in Maridi County?

1.5.2 Specific ObjectiyESl'} ASTIH G

1. To determine the technical factors that affect data quality at all health facilities in

Maridi County.
2. To examine the organizational factors that influence data quality at all health

facilities in Maridi County



3. To assess the behavioral factors associated with data quality at all health facilities

in Maridi County.

1.6 Justification of the Study

% i Urne iE!{J hational volunteers
atal !n& ith Wifgited institutional-
i e in this country

The study sought to draw associations between the prevalence of epilepsy among

populations that received annual distribution of ivermectin, a drug used as

chemoprophylaxis for the prevention of onchocerciasis. The government of South Sudan



had set such an approach to reduce the disease burden. However, morbidity data continued
to report new cases. Therefore, the study recommended a bi-annual distribution to
strengthen its effect in lowering the prevalence of epilepsy (Jada et al., 2022). The

recommendation for implementation was picked positively by the National Ministry of

es driven by donors,

#from the state

are institutionsak=Maridi

South Sudan employs a hierarchical system of health data administration, where counties

are responsible to state data managers, who are answerable to their national counterparts.

The extended data pathway hinders the prompt provision of feedback and allocation of



resources. It also loosens the health ministry’'s oversight role to improve the quality of the

data.

States may increase their involvement in planning due to a better understanding of their

challenges. However, to achieve effectiveness, it is essential to have superior-quality data,

ds to be generalized,

r#alth system is

. . . H S - . .
This study investigated the caly'o Ja I 1 M ok oral aspects that contribute
to the potential for enhancing data quality in Maridi County, South Sudan. The research
was restricted to 12 health facilities based on pragmatic considerations regarding time,
resources, security, and functionality. This all-inclusive study had equal considerations for

women, men, and people with disability who worked at the selected facilities. The



methodological scope was cross-sectional, applying quantitative and qualitative study
techniques. The tools selected were a structured questionnaire for the quantitative aspect
and Key Informant interviews for the qualitative inquiry. The scope of data analysis
included univariate analysis, bivariate analysis for quantifiable information and qualitative

data, and thematic content analysis. Quantitative data were collected before the qualitative

LASTING



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This part summarizes pertinent findings from similar studies on factors influencing data

. Google Scholar
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circular fashion becatigei outy nfluence its inputs (G eories, 2023). This

theory aligns effectively wig L Ak L T lll M .[: j)s to investigate the related
elements that impact the regular health information system. The study comprises three
distinct components: technological, organizational, and behavioral aspects, the interplay of

which determines the quality of medical data.
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Figure 1: The Systems Theory (Matok & Brown, 2008)

returns and streamline the process of admitting patients.

The modern-day HMIS evolved from HIS. A concept popularized by Lippeveld as a

comprehensive endeavor to gather, analyze, present, and utilize knowledge and data on

11



health to impact policy-making, program implementation, and research (Epizitone et al.,

2023).

The World Health Organization refers to the HMIS as the production of information to
enable healthcare system decision-makers to identify obstacles and needs, decide on health

policies, and allocate limited reso

A proficient HMIS ace

enhanced plann*

proficiency in data analysis was 35%. The general degree of assurance in HMIS-related

responsibilities was 69.4%, while the level of proficiency was 58%. According to

Harikumar (2012), the percentages regarding the management duties of planning,

12



monitoring, training, governance, and quality control at the facility level were 13.2%,

43.4%, 5.3%, 28.4%, and 44.7%, respectively.

The Health Information Management System in most African nations exhibits a significant

performance deficiency across various measures. Consequently, the data quality in these

countries is persistently inadeg a et al. (2023) described it as

patchwork. This i%dUe ;gm r ﬁ quality.

II‘;ldl:eif a igher at 77.3%.
%dejumo, 2017).

their

The data comple

However, this di
Thep irl

regular hg

In Sudan, t c 3 ¢ ‘L"j ing rates

through the ﬁ Mﬁ :
remaing@iSte d dg(jﬁﬁriui 1Sj 0°S 3, Sudan
’? > . '

I'f ng SRS ® L its
N2 s
NGO NAL Y

Rumisha et al. (202 i’g\‘ i) ally sheets were
G,

ave since

hea

'-E"-

th center, and hospital had

of basic health
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availability rates of 91.1%, 82.2%, and 77.890, respectively. Nevertheless, the metropolitan

districts demonstrated a very low tool availability rate of 65%. Occurrences of inaccurately

filled out paperwork and insufficient adherence to coding guidelines were observed.
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According to Teklegiorgis et al. (2016), the overall data quality in Eastern Ethiopia's
departments and/or units was 75.3. The data quality was assessed to be lower compared to
the national standard. Health units demonstrated low-quality data compared to hospitals
and health centers. Ethiopia is a vast country with decentralized governance structures,

which means resources and efforts are not equally distributed.

(Sako et al., 2022). Howeve K€, they yield determinants

LAsTING

such as data collection tools, alned data team; feedback and
supervision; motivation, level of knowledge, and attitudes of staff (Nguefack-Tsague et al.,

2020)

14



2.3.3.1 Technical Factors.

The technical factors influencing data quality include systems, forms, procedures,
techniques for gathering data, data collection tools, standard indicators, and trained staff

(Kirimi, 2017; Dagnew et al., 2018). According to Wude et al. (2020), data quality is

strongly influenced by the availghi g.a standard set of indicators. This

2.3.3.2 Organizational Factors.

According to Glette et al. (2021), training personnel involved in health data management,
feedback on data quality, supportive supervision, and working conditions for health

personnel are examples of organizational factors. Lemma et al. (2020) suggest that

15



capacity-building measures, such as training, data quality assessment, and feedback
provision to healthcare facilities, aid in raising the standard of the data. Their research
attempts to offer a more comprehensive grasp of the utilization and accuracy of routine

health data in middle-class and underdeveloped nations.

A study by Moloko et al. (20 i puth Africa, revealed that training,

2.33.3 Behavioral Factors AL . SETIH G

Behavioral factors are elements such as employee competence, skills for assessing the
data's quality, solving issues related to tasks involving HIS, competence in HIS activities
motivation, and the attitude of staff toward health information systems (Kleiman et al.,

2020; Chanyalew et al., 2021)

16



Glele Ahanhanzo et al. (2014) identified worker demotivation and low capability as factors
contributing to poor data quality in everyday operations related to health information
systems. Hlaing et al. (2022) suggested that work burdens affect healthcare data quality
because human resource shortages can result in work overload. This study supports their

theory that the competency of healthcare waorkers, as measured by their education and

involvement at wo#k

According to Moses

interpretation i

and reliability of the data associated with target population estimates and served as the

foundation for calculating coverage figures in 14 countries.

Related studies in Kenya and Ethiopia found inadequate staffing, the design of tools for

gathering data, as well as the absence of essential resources as the main challenges in

17



Kenya, while lack of register books, the intricacy of the indicators, and the choice of
denominators depending on population estimates as key challenges in Ethiopia (Adane et
al., 2021). Comparatively, Tilahun etal. (2022), in a study in Ethiopia, recorded challenges

such as HMIS staff capacity, HMIS code, excessive data sources, inadequate data quality

Framework
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components were categorized into technical, organizational, and behavioral factors,

forming this study's structural foundation (Aqil et al., 2009).
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Figure 2: The PRISM Framework (Aqil et al., 2009)
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The knowledge gap was determined by thoroughly examining existing literature and desk

research. In terms of literature, the search for routine health information in South Sudan

yielded significant outcomes on Google and Semantic Scholar search engines. However,

the majority of these studies were deemed irrelevant or lacked the necessary specificity to

19




be included. Nevertheless, a thorough examination conducted in collaboration with
development partners and the County Health Department determined the specific areas of
inquiry for acquiring fresh insights. Only one study in Maridi County was relevant to the

research issue and specifically focused on data on family planning contained in the HMIS.

LasTING

20



2.5.2 The Dependent Variable

The variable under investigation being measured or evaluated is known as the dependent
variable and is influenced by modifying the independent variables, as stated by Cherry

(2022). The study assessed data quality as the dependent variable, evaluated based on the

monly connected to

4#51 use within an

LASTING
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Independent Variables Intervening variable Dependent variable

Technical Factors
e Data collection tools
e Standard Indicators
e  Trained personnel

Organizational g
]

Training
Feedback

Data Quality

Supervisi

CASTING
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CHAPTER 3: RESEARCH METHODOLOGY

3.1 Introduction

This chapter includes the study design, the study area/setting, the target population, sample

and sampling procedures, data collection_instruments, validity and reliability, data

siderations, study

Equatoria State. It is surro L fue e 1 1 H a_: to the east by Mundri West
County, and to the north by Mvolo County. It also borders the Democratic Republic of the
Congo to the southwest, Lakes State (Wulu County) to the Northwest, and Yei County in
Central Equatoria State to the southeast. The population of Maridi County was 82,461 in
2008. In 2020, the population had increased to 92,205 (South Sudan Bureau of Statistics,

2022). The County has five Payams Kozi, Landili, Maridi (County Seat), Mambe, and
23



Ngamunde. The languages spoken by the six ethnic groups include Baka, Mundu,
Avukaya, Zande, Moro Kodo, and Wetu. The County has 12 functional health facilities

submitting routine health information as of June 2022 (1 hospital, 5 PHCCs, and 6 PHCUS).

3.4 Why Maridi County

The researcher cf due to its diverse

2aks. The county is

home to reputa i C ﬁ] have invested
&5 - i care personnel.

registration (data clerks) and preparation or reviewing of the monthly reports (facility in

charge).

24



3.5.1 Inclusion Criteria

Health workers working in functional healthcare facilities who have been employed for
more than six months participated in the study because they are deemed to be very familiar
with recording and compiling healthcare data.

3.5.2 Exclusion criteria

alliiee

h I'ninfqﬁ:pe;q
'n.ﬂj.the st

Staff whose health udy and those who

worked less than

considered to h* - qulé'lpif{ezh
researcher was in ted |q,'g.§}b 3 alia

pecause they were

stems since the
xd some had not

chosen using simple randorg E_ 1y’ 8 T !i N {:} . A piece of paper with the
options yes and no was cut into small pieces and folded. Each health professional was asked
to choose one at random. Those who chose yes were then eligible for the interview and
became research participants; the reason for using this was due to the small sample size in

the health facilities, which can be easily managed using this method.

25



For the qualitative study, 12 Key informants who are deemed experienced with the
collection of health data and familiarity with the behavioral, organizational, and technical
aspects that affect data quality at various levels were selected purposively for in-depth
interviews, and the interviewees were identified from multiple healthcare facilities which

consist of one staff per facility and those whg took part in the interview were all head of

N =n/(1+n/N)

nf=384/ (1+384/146) =106
Health workers were selected through probability proportional to the size of each health

facility, which was calculated using nx=x/No*n. Where nx denotes a sample for a

26



particular facility, the number of healthcare professionals in each facility is x., No overall
health workers available in the health facility, and the sample size is n.

Table 1: Population Sample Distribution

S/No Health facility type Sample size (nx)  Total population

_...-—-.._ <X>
Beth‘@'.ll.ll.l:fﬂk'
M, .

Don Bos i F
WO AN\ e/ £/ QAH.

oﬁlﬂcc ":."":‘77‘

© 00O N o o B~ W NP

relevant to the study were removed and excluded to develop a pertinent tool for the study.
It serves as the foundation for the questions, and the researcher anticipated that the
remaining questions would add value to the tool’s Validity. It was divided into the

following four sections:

27



The first section contained inquiries into the socio-demographics of the healthcare
professionals, such as their age, education, job history, and others. Sections two and three
of the questionnaires were to identify behavioral, organizational, and technical elements

connected to data quality. The fourth section consists of interviews with the key informants

3.9 Validity and Relialt

3.9.1 Validity*

whereby if Cronbach’s Alpk ﬂ_ i n T 1 NI IE. otherwise, it is not if it
is < 0.6. According to the data in the table below, Cronbach’s Alpha was higher than

0.6, indicating that the tool was reliable.

28



Table 2: Reliability Test Score

Reliability Statistics

Cronbach’s Alpha N of Items

Score 0.694 73

3.9.3 Dependability

Dependability is a strategy for guaranteeing that the same study conducted under similar
conditions yields the same results. The researcher employed suitable qualitative data-
gathering instruments and unique, in-depth interview guidelines to guarantee the study’s
Dependability (Appendix 2). This enables readers to evaluate the degree to which relevant
research practices have been followed.

3.9.4 Transferability

The researcher conducted in-depth interviews with a wide range of participants from all
the health facilities to ensure that the findings are applied to diverse patterns and identified
the recurrent themes and patterns concerning the variables that impact data quality, the
answers environments and represent a more comprehensive range of backgrounds (Table

6).

3.10 Data Collection Proc

Quantitative data were gathered through face-to-face scheduled interviews with a facility
in charge (data clerks, Health departments), which took place at the respective health
facilities, printed questionnaires consisting of open and close-ended questions given to

respondents after thoroughly explaining and consenting to participate, the respondent filed

29



the questionnaires and submitted to the research assistants. The allocated time for the
interview was 45 minutes, although most of the time spent on each interview varied from

25-35 minutes.

For Qualitative data, Face-to-face interviews were performed by the researcher and the

interviewee. The participants ideh agreed to participate were invited

critical participants A r has a face-to-face

ﬁ each in-depth

l'I'Eé spent on eachainterview

- i

and al

3.11.1 Data E’rocessing
The raw data were checked for errors and completeness at the field level. The rule was to
remove any questionnaire with more than 10% unanswered questions from entry. Since
none of the questionnaires reached the elimination threshold, all 106 questionnaires were
considered for entry. The data were then entered into SPSS version 25, cleaned, and
analyzed to check for missing values (Table 4), and any missing value of less than 10%
was considered negligible. Manually filled vital informant interview guides were typed

into word and stored for analysis.

30



3.12 Data Analysis

The quantitative data were analyzed using statistical software IBM-SPSS version 25. Data
on the demographic characteristics of the respondents were compiled using descriptive
statistics. Tables and graphs were created using the ‘Analyze’ field in the SPSS window,

and appropriate frequency distribution tables were made.

LasgTInG

The principal component a ate statistical technique that

organizes, extracts, and groups data into components based on intercorrelations within
variables (Abdi & Williams, 2010). Originating from Cauchy, it was first formulated by
Karl Pearson in statistics. Hotelling later worked on the method, but it gained popularity

after computers due to its complexity (Kovacs et al., 2022). Principal components are linear

31



combinations of original variables that maximize the variance of all variables, providing
an approximation of the original data table using only these major components (Greenacre

etal., 2022).

3.14.1 Working Model to Establish Correlations among the Variables

The working mode A ) ¢ gf the cgrrelations among the

independent variall

Variables t

» Standard data collection
tools

» Standard Indicators

* Qualified human resources

* Training

* Review meetings.

* Supervisions

» Feedback

* Field of study

» Years of experience

* Rewards

Timeliness

J

Organlzatlonal l
Factors I =
! l
L]

Data Quality
‘ Completeness

Correlations a ) : i [Bciavarrables were pulled

Correlations between the independe i :  The independent
variables in their groups were correlated with the two data quality variables to examine if

these variables associate.
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The Cohen’s ranking determined the strength of the correlation. In 1988, Cohen
simplified the interpretation of correlation coefficient results and recommended Pearson r
values of 0.10-0.29, 0.30-0.49, and 0.50-1.00 to demarcate robust, moderate, and weak

correlations, respectively (Hanifah et al., 2018; Gignac & Szodorai, 2016) [Table.3]

Table 3: Reference Table for.th

R

framework (Table 4). The™@& !' i e ' H {:' ™ into four subthemes. Data

quality was one of the major themes in addition to Organizational, technical, and behavioral
factors. The detailed notes of the key points were then aligned with the research objectives

and coded (Appendix 6)
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Table 4: Thematic Framework

Factors influencing data Quality in routine health information system

Behavioral Organizational Technical Data quality practices
factors agtors gllected from facility
1 Lackof § and entered into
motivation hly reports.
2 Negative re : ‘ 3?5 data
attitude ? i on by the person in

3.16 Ethical Consideratiog L A S TI H G

The Amref International University approval letter was presented to South Sudan’s
Ministry of Health, Research, and Ethics Review Board for approval (Appendix 4). The
approval letter for the research and ethics board was presented at the county level to the

County Health Director-Maridi for further approval (Appendix 5). Before administering
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the questionnaire, the participants were given consent forms after explicitly explaining
what the study entails (Appendix 1). The instruments used to gather data had no names but
rather codes. Keeping the questionnaire anonymous protects the identity of the

respondents.

other dimensions vital in d

LasTING
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CHAPTER 4: RESULTS

4.1 Introduction

The results chapter presents the results from the quantitative analysis and the results from

the qualitative data analysis describing factors influencing data quality.

4.2 Presentation @

4.2.1 Respo(%ate
There was a 10
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Table 6: Key Sociodemographic Characteristics

Variable Frequency Percent
Age

less than 25 years 8 7.5
26-40 years 63 59.4
41-56 years 29.2
Above 56 years |l -~ 38
Total g 100
Female 25.5

Male
]
Totak

None
Certifica fﬂ y 67.9

Diploma

Bachelor’s

4

The

4.2.3.1 Timeliness. L 4 5 TI ] G

The standard practice in South Sudan is that reports for the previous month are submitted
to the County Health Department by the fifth of the following month. The results, however,

show that only eight health facilities meet this timeline, translating to 67% performance.
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4.2.3.2 Completeness.

Itis required that all reports be submitted to the County Health Department for the reporting
period. The overall performance fell short of the requirements for completeness as 9 of 12
health facilities submitted all reports to the County Health Department, a performance of

75%.

=

o N B OO

9
10 8
4
3
i % = L
No Yes No

Yes

Timelines of reports Completeness of reports

W Frequency M Percent

LasT NG

The majority of the responde at their healthcare facilities use

standardized data collection methods. Furthermore, 66 (62.3%) stated that they receive data
collection tools tailored to their specific requirements on a regular basis. Additionally, 86
(81.1%) reported that their facilities possess a collection of standardized and clearly

defined indicators. Likewise, 82 (77.4%) indicated that they have staff members who have
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the required training to complete the requisite documents. Finally, 100 respondents
(94.3%) indicated that the reporting formats are user-friendly and understandable (Table
7).

Table 7: Technical Factors

Variables Frequency | Per cent
88.7
11.3

62.3

Availability of sgangd

How often are you

collection tool*

Do you

standarad

registratio

simplg d

N
l"'“

4.2.3.2 Organrzgii@ira OIS,
‘N

Above half of the participants (62.3%) did not receive refresher training in the past six

"W 5

months. Additionally, 76.4% of the respondents acknowledged the occurrence of review
meetings, while 80.2% received supportive supervision. Furthermore, 80.2% of the
respondents acknowledged receiving data quality supervisions from the County Health

Department. During these supervisions, 81.1% of the respondents revealed that their

39



supervisors evaluated the accuracy of the data. Lastly, 57.5% of the respondents received

performance feedback from the county health department (Figure 6).

Percent

vo I
vo
vo

Feedback

Supportive
supervision
received

received

Yes

vo I

Refreser
trainning in the Review meeting

last 6 months

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0
“ b
Figure 6: Orga
4.2.4.3 Behavioural Facta
Only 38.7% of the respondents had a ertrications, such as Lab technician and

Public Health. This was followed by 25.5% of the respondents who had certifications in
nursing. Community health workers made up 16% of the respondents, while clinical
medicine and midwifery accounted for 11.3% and 8.5% respectively. With respect to years
of experience, 44.3% of individuals had 1-6 years of work experience, while 34.9% were
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those with more than 12 years of experience. 69.8% of the health workers expressed
motivation to do HMIS activities, while 85.8% of the respondents actively participated in

the gathering or aggregation of data within the health facility (Table 8).

Table 8: Behavioural Factors

Per cent

16.0

25.5

8.5

11.3

38.7

il
(BE
84.9

69.8

30.2

29.2

L
4.2.5 Infere ="l."|_,~

County, South Suda

LasTING

4.2.5.1 Correlations among the In0ep

Factor analysis was done to uncover deeper interactions among the independent variables
to demonstrate their interdependence as a system. Over half of the variables show

correlations from weak to strong. Years of staff work experiences has moderate significant
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correlation with respondents’ field of study (r=-0.305, P=0.001<0.05) and weak significant
correlations with qualified human resources to fill the formats and taking part in the
collection and aggregation of data from the facility (r=-0.172, P=0.039<0.05) & (r=-0.171,

P=0.04<0.05) respectively.

There was moderate significag motivations of facility staff with

P:0.013<0.05),*rtive suqiq?lki "
E
feedbgCRufimein.the county:ﬂ'e L a0
) e,

correlations with training og

LasTING

Review meetings has moderate significant correlations with supportive supervisions
(r=0.449, P=0.000<0.05), set of standard indicators (r=0.470, P=0.000<0.05) and
availability of standard data collection tools (r=0.363, P=0.00<00.05) whereas weak

moderate significant correlations were noted between review meetings and regular
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feedback (r=0.299, P=0.001<0.05), qualified human resources (r=0.177, P=0.034<0.05),

taking part in data collection and aggregation (r=0.221, P=0.011<0.05).

Supportive supervisions have significant moderate correlations with regular feedback
(r=0.302, P=0.001<0.05), availability of standard data collection tools (r=0.345,

P=0.000<0.05), set of standard_ia B.000<0.05) and weak significant
correlations with §sétsi Pam r @ I= 0.

‘ ; collection tools

, .000<0.05) was

The correlation b *nli El\/;l
(r=0.303, P:O.&
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Table 9: Correlations among independent variables

Years of motivations | Responden qualified Taken part in
work at work education's human the collection
experiences place field of study resources of data

-0.172 -0.171

1.000 0.000 -0.305

Years of work experiences

P-Values

Motivations of staff

P-Values

Respondent field of study

P-Values

Trained on HMIS

P-Values

Review meetings

P-Values

supportive supervisions

P-Values

Regular feedback from the
CHD

0.025 0.280
P-Values

0.038 0 L 0.388 | 0 b g 0 60
Availability of standard data ¥ -'H Ll . r
collection tools I pﬂ o ! = ™™ j J

P-Values |
_ R T L o~
Tl L\ TN /Ona WS S
| O g
orms A -
P-Values
|

Bl 02 | 0055 | _ouWWRR 0355 | 1o | oo |

.

qualified human resources

P-Values

Taken part in the collection
or aggregation of data

P-Values
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4.2.5.2 Correlation between Technical Factors and Data Quality.

All correlations between the technical factors and the data quality variables are
insignificantly weak. The correlation of the set of standard indicators and timeliness is

insignificantly higher amongst the_loe -0.213, p=0.253>0.05), followed by

resources

0.111

to the CHD (Completene

P-Values 0.294 0.366

Are monthly RHIS reports

. . L -0.125 -0.213 0.000
submitted on time (Timeliness)

P-Values 0.349 0.253 0.500

*. Correlation is significant at the 0.05 level (2-tailed).
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The qualitative data also revealed the impact of the consistency of data collection tool
provision on reporting rates; some participants identified the absence of data collection and
reporting tools at the health facility, as well as the lack of qualified personnel in the health

information management system, as factors that negatively affect data quality.

These qualitative outputs suppQue athat emphasized the connections

negative correlations.

“Sometimes, if *

regul@f

to be reg

Table 1

etings

All the monthl
submitted to the CHD
(Completeness)
P-Values

discuss

Are monthly RHIS

time (Timeliness)

reports submitted on 0.120 0.158 0.239 0.426

P-Values 0.356 0.312 0.227 0.083

*. Correlation is significant at the 0.05 level (2-tailed).
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The results show strong significant correlations with regular feedback from the CHD and

completeness of reporting (r=0.683, p=0.007<0.05) and review meetings (r=0.522,

p=0.041<0.05). Moderate insignificant correlations resulted from the training of staff on

p=0. ﬁ
The findi E

health fad pg_

nt to the
a strong

significant

garticipants

\lman

of performance "I:’r?lll, Balth "f'-?. Jerforming, and

inadequate staff trainirng fieion .
“Only the in charge and date ! A 7] T 1 Ht’ E" or the new HMIS tools, but

the rest of the department’s heads were not trained, yet they are required to use these

tools.” (key informant 1)
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“I am the only clinical officer clerking patients in this facility. If the nurse is not present, |

occasionally have to do ward rounds and even dispense drugs, which can get tiresome.”

(Key informant 5).

Table 12: Correlation between Behavio actors and Data Quality

Rewards or
motivations
All ﬁ" g |
sub ad te . -0.098

(Comple

P-Value

Are mo
submitted
P-Values

ignifie "':'Ii,.- orre A . ile

motivations showe "Ilﬂl‘ £ eliness (r=0.478,

p=0.058). The rest of the ignificant correlation with

LASTING
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completeness and timeliness at (r=-0.277, p=0.191>0.05) (r=0.061, p=0.424>0.05) (r=-

0.111, p=0.363>0.05), (=-0.09759, p=0.381>0.05) respectively.

Years of work experience have a significant correlation with data quality; however, the rest

of the factors have insignificant correlations.

On a qualitative ngt pu@s generated during

the key informant otivation to staff

performing heal preciation, and

th Jnande fi@
*rds Wcﬂg""by

negative attitud of cooperation

LASTING
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CHAPTER 5: DISCUSSIONS

5.1 Introduction

This section provided an opportunity for the researcher to comprehend the findings in

relation to the study's objectives. It discussed the findings' theoretical relevance and

to the County Health Department. The performance, however, fell short of the national

requirements of 90% for completeness and 85% for timeliness. The low performance
demonstrates the chronic challenges affecting the performance of data quality. Notably, the

digitalization of the RHMIS requires that reporting facilities be connected to the internet
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so that data is electronically transmitted from the health facility to the County health
Department. Unfortunately, all the health facilities in Maridi County use a manual
approach, thus limiting the efficiency of transmitting data in real time. Many African
Countries, including those that have shown significant investment in health systems

strengthening also experience challenges_ inmeeting timeliness and completeness targets.

In Uganda, the n3 Bsg, from 2020-2021

staggered between 2 ansikombi et al.,

2023). A study *N . "'|,. i 50jja ne have a data
quality of 74%, i : e info ion systems and

further supported the necessity of ensuring consistent dissemination of all tools and
technical protocols throughout all healthcare institutions, encompassing competent
personnel, standardized data collection instruments, and user-friendly reports and
registration forms that are easily comprehensible. The crucial aspect of this element is the

necessity for a consistent and enough provision of the technical prerequisites to enhance
51



the effectiveness of the regular health management information framework. This study
aligns with previous research conducted by Wude et al. (2020) and Wandera et al. (2019),
which found that the presence of trained personnel and a standardized set of indicators
strongly influence data quality. It is also consistent with the findings of Mucee et al. (2016)

in Tharaka Nithi County, which demonstrated that the competence of staff and the use of

standardized data g@lls g et al. (2022) also

identified multiple ré

factors affecting*qu

5.4 2=@kganizationa

porting tools as key

@guality evaluation, and

feedback supply to healthcare A 3 a1 1 H {:’ of data.

Moloko et al. (2022) conducted prior investigations in Tshwane, South Africa, which
revealed that training, supportive supervision, and adequate human resources exert an
impact on the data's quality. These findings support the research conducted in Northwest

Ethiopia by Afework (2022), which identified deficient feedback systems, insufficient
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human resources, and inadequate training as barriers to data quality. This aligns with a
study conducted in Kenya by Cheburet et al. (2016), which found that support supervision
positively impacted the data quality. Similarly, a survey conducted by Shiferaw et al.
(2017) in Gojjamzone, Northeast Ethiopia, demonstrated that supportive supervision,

HMIS training, and providing feedback to_health facilities were significantly associated

021) in Ethiopia,

ere significantly

li ith the current
#tional issues to

demotivation and low capability as factors contributing to inadequate data quality.

According to Hlaing et al. (2022), work burdens influence the quality of healthcare data
owing to a lack of available personnel, which can lead to excessive workloads. This study

corroborates the hypothesis that the proficiency of healthcare professionals, as assessed by
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their level of education and engagement in their work, is connected to the accuracy of the

data. Furthermore, all these findings align with the current study.

In a separate study conducted by Moses et al. (2019) in South Sudan, the effectiveness of
gathering, analyzing, and understanding data is hindered by a lack of skilled workers in

healthcare facilities. Insufficientl i i ay be unable to collect precise or

inaccurate data, | g : £3 'ion. In contrast,
Haftu et al. (2021) cte person and lacking
motivation for NSibii e biag s 10 0 acy in Ethiopia.

These #Fg

dings align wn‘[r-m
beha ﬁ GtQrs

5.4.4

Although t ons among

the ing on the

pers IIL .l::-l [ k. "I to

4 4 .
denfistrat® ‘?:ﬂ':lr#‘ . ’*IG N ‘q L ﬂ g ,g:Lh & SYEEMS

aB1Y strong 4;‘2" eractions among

Evaluation theor

_""FF'E- .

the independent variables.™® 1"l= ables correlated with each

other, 2% strongly, 29% modera ese correlations showed a mix
of relationships through all three categories of technical, organizational, and behavioral

factors. Such interaction, therefore, showed the systems nature of the factors that impact

the regular health information systems functional and agreed with the systems theory.
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In 1998, Ken Orr published a data quality and systems theory book. In his narration,
information systems are embedded in a circle of real-world feedback control systems. The
book reinforced a system of thought on data quality and advised a goal-centered and

organizational approach (Orr, 1998).

LASTING
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CHAPTER 6: SUMMARY, CONCLUSION AND RECOMMENDATIONS

6.1 Introduction

This chapter examines the study’s conclusions, recommendations, and suggestions for

future research.

6.2 Conclusions

The study reve ha [ hinlialit; Irﬂr
inadequate trair‘%]d Iag'li.'-q";'r"qe
Y -~

f ar%)unty, such as
85;:@.0 organizational

tors,
-

health facilities to avoid issues of stock outs.
3. Addressing the human resource gap by recruiting enough staff in the health facility
by County health department to close the gap and this can address the challenge of
work overload since staff will be enough to perform their duties in the health

facilities.
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4. Provide supportive supervision by the County Health Department, the State
Ministry of Health, and implementing partners, which should frequently be to the
health facilities, and mentorship should be conducted during those visits.

5. Provide regular feedback on data quality by the County Health Department to the

health facilities, and this will help them understand their performance status, hence

all\r er
6. The Count %ir 0 a e health facilities,

especiall se e I||I"Inql'\|-lli‘zlkiialtall£ iacentives.
7. Health f*staff.éﬂ?b 0 it *&Ie toward their

encouragineé

M

erate
—
—

abhysCd

further research should be considered to include private health facilities.
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Appendix 1: Consent Note & Questionnaire

Consent Note

I am (state name and place of work).

I provide will help in

. # this interview,

elp us identify.aRy gaps

imformation

LasTING

Part I: - Tool for behavioural and organizational assessment

A self-administered survey for health professionals

Regarding the interviewer: educate participants about the study and obtain their

informed consent before beginning the investigation
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98
/ / DD/MM/YYYY

Type of healthcare facility;

Name of the Health facility

Unit
Tel No: (Office)

Qn99a How many monthly RHIS reports are supposed to be submitted to the
CHD by the health facility?

(SPECIFY THE NUMBER OF REPORTS ACCORDING TO THE
FACILITY TYPE)

1. Hospitals

2. Health centres
3. Health Units

1. Is there a deadline for submission of the

monthly RHIS report by the health facilities | 2. No
to the CHD?

Qn100b 2. If yes, what is the Reporting deadline?
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Qn100c Are monthly RHIS reports submitted on time to CHD in the following
months?

(CHECK THE SUBMISSION DATES OF THE AGGREGATE RHIS
REPORTS FOR THE THREE REVIEW MONTHS)

1. Yes 1. Yes
2. No

Behavioural facto

Qn104. Level of education attained
1. None
2. Certificate

3. Diploma
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4. Bachelor Degree

5. Master Degree

a. Other.......................

LASTING

72



Qn105. Respondent education's field of study

a. CHW/MCHW

b. Nurse

c. Midwife

d. Clinical

. Training

c. Appreciation

Qn109. Have you taken part in the collection or aggregation of data from the health
facility's registration form or tally sheet?
a. Yes
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b. No

Organizational factors

Qn110. In the past 6 months, have you ever gotten training on HMIS operations?

a. Yes

partment or

a. Monthly L 4 5 TI fd G

b. Quarterly
c. Annually
Qn115. Did the supervisor evaluate the accuracy of the data?

a. Yes
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b. No

Qn116. If so, did the supervisor evaluate the data quality using a checklist?
a. Yes
b. No

Qn117. Did you get regular feedback fro ounty health department or state on data

quality?
a. Yes

b.

LASTING

b. Monthly
c. Quarterly

d. Others (SPeCify)......covviriiiiiiiiiiiieeee,

Qn121. Do you have a set of indicators that are standardized and defined?
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a. Yes
b. No
Qn122. Do you believe that the report and registration forms are user-friendly and simple

to understand?
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Appendix 2: Key Informant Interview Guide

1. Describe the data collection processes in this health facility (documentation to

reporting)

. Are there practices put indg Babealth facility's data quality?
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Appendix 5: Missing values

Number Missing

Variable Count Percentage
Name of health facility 106 0 0%
Type of health facility 106 0%
Qn99% 0%
Qn99%b 0%
Qn100a 0%
Qn100b 0%
Qn100c 0%
Qnl101 0%
Qn102 0%
Qnl103 0%
Qnl04 : 0%
Qn1gs Y | 0%
on1gal

Qni107
Qnl108
Qn109
Qnl10
Qnlll
Qnli12
Qni113
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Appendix 6: Codebook for factors influencing data quality

Data a. Data 1. Describe the data | a.l1. Data collected from the facility register
Quality quality | collection processes in | and entered into monthly reports

practices | this health facili a.2.1 Yes, such as data verification by the
in charge

in the
facilfi m r eﬁﬁ aeBlindithe reports before

ports jointly with the team

VO
ffpﬂﬁmen# information about
= C

& ds work
—

ong staff
Lol the facilities

Derative in the

3rvis
on HMIS
ance feedback to

influencing®
quality a0 S
iL A & T l"' {:,_ iting enough human resources

requent supportive supervision to

staff

2.4.3 provide performance feedback to the
facility

2.4.4 Trained staff on HMIS
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3. Technical 3.3.1 lack of data collection and reporting

factors tools
influencing data 3.3.2 lack of trained staff on HMIS
quality 3.4.1 provision of data collection and

reporting tools
3.4.2 Ensured trained staff are available to
perform HMIS tasks
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Appendix 7: Similarity Report

FACTORS INFLUENCING DATA QUALITY IN ROUTINE health
information System-Final.

ORIGINALITY REPORT

12, 120 4 Ao,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

etd.uwc.ac.za 1 .
Internet Source AJ

hdl.handle.net

Internet Source 1 %

2]

erepository.uonbi.ac.ke '] %

Internet Source
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