Show simple item record

dc.contributor.authorMehanian, Courosh
dc.contributor.authorJaiswal, Mayoore
dc.contributor.authorDelahunt, Charles
dc.contributor.authorThompson, Clay
dc.contributor.authorHorning, Matt
dc.contributor.authorHu, Liming
dc.contributor.authorMcGuire, Shawn
dc.contributor.authorOstbye, Travis
dc.contributor.authorMehanian, Martha
dc.contributor.authorWilson, Ben
dc.contributor.authorChamplin, Cary
dc.contributor.authorLong, Earl
dc.contributor.authorProux, Stephane
dc.contributor.authorGamboa, Dionicia
dc.contributor.authorChiodini, Peter
dc.contributor.authorCarter, Jane
dc.contributor.authorDhorda, Mehul
dc.contributor.authorIsaboke, David
dc.contributor.authorOgutu, Bernhards
dc.contributor.authorOyibo, Wellington
dc.contributor.authorVillasis, Elizabeth
dc.contributor.authorTun, Kyaw Myo
dc.contributor.authorBachman, Christine
dc.contributor.authorBell, David
dc.date.accessioned2022-02-01T21:06:06Z
dc.date.available2022-02-01T21:06:06Z
dc.date.issued2017-10
dc.identifier.citationMehanian, C., Jaiswal, M.S., Delahunt, C.B., Thompson, C.M., Horning, M.P., Hu, L., McGuire, S.K., Ostbye, T., Mehanian, M., Wilson, B.K., Champlin, C.R., Long, E., Proux, S., Gamboa, D., Chiodini, P., Carter, J., Dhorda, M., Isaboke, D., Ogutu, B., Oyibo, W., Villasis, E., Tun, K.M., Bachman, C.M., & Bell, D. (2017). Computer-Automated Malaria Diagnosis and Quantitation Using Convolutional Neural Networks. 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), 116-125.en_US
dc.identifier.otherDOI:10.1109/ICCVW.2017.22
dc.identifier.urihttps://repository.amref.ac.ke/handle/123456789/565
dc.descriptionThis ICCV Workshop paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the version available on IEEE Xplore.en_US
dc.description.abstractThe optical microscope remains a widely-used tool for diagnosis and quantitation of malaria. An automated system that can match the performance of well-trained technicians is motivated by a shortage of trained microscopists. We have developed a computer vision system that leverages deep learning to identify malaria parasites in micrographs of standard, field-prepared thick blood films. The prototype application diagnoses P. falciparum with sufficient accuracy to achieve competency level 1 in the World Health Organization external competency assessment, and quantitates with sufficient accuracy for use in drug resistance studies. A suite of new computer vision techniques—global white balance, adaptive nonlinear grayscale, and a novel augmentation scheme—underpin the system’s state-of-the-art performance. We outline a rich, global training set; describe the algorithm in detail; argue for patient-level performance metrics for the evaluation of automated diagnosis methods; and provide results for P. falciparum.en_US
dc.description.sponsorshipBill and Melinda Gates Foundation Trust through Intellectual Ventures’ Global Good Funden_US
dc.language.isoenen_US
dc.publisherCVFen_US
dc.subjectComputer vision systemen_US
dc.subjectMicrographsen_US
dc.subjectWorld Health Organizationen_US
dc.subjectDrug resistanceen_US
dc.subjectP. falciparumen_US
dc.subjectOptical microscopeen_US
dc.titleComputer-Automated Malaria Diagnosis and Quantitation Using Convolutional Neural Networksen_US
dc.typeOtheren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • General - GEN [353]
    This is a collection of research papers from the wider Amref community

Show simple item record